翻訳と辞書 |
Difference hierarchy : ウィキペディア英語版 | Difference hierarchy In set theory, the difference hierarchy over a pointclass is a hierarchy of larger pointclasses generated by taking differences of sets. If Γ is a pointclass, then the set of differences in Γ is . In usual notation, this set is denoted by 2-Γ. The next level of the hierarchy is denoted by 3-Γ and consists of differences of three sets: . This definition can be extended recursively into the transfinite to α-Γ for some ordinal α.〔.〕 In the Borel hierarchy, Felix Hausdorff and Kazimierz Kuratowski proved that the countable levels of the difference hierarchy over Π0γ give Δ0γ+1.〔. See in particular (p. 173 ).〕 ==References==
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Difference hierarchy」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|